I just want to point out how well Schuyler Erle's implementation of Douglas-Peucker line simplification plays with Shapely.
>>> from shapely.geometry import Point
>>> point = Point(0.0, 0.0)
>>> outline = point.buffer(2.0, quadsegs=32).boundary
>>> coords = list(outline.coords)
>>> from dp import simplify_points
>>> simple_coords = simplify_points(coords, 0.25)
>>> from shapely.geometry import LineString
>>> simple_outline = LineString(simple_coords)
>>> outline.length
12.565109003731115
>>> simple_outline.length
12.245869835682875
The simplify_points function requires a sequence of coordinate tuples. The coords property of a Shapely geometry is an iterator over coordinate tuples, but you can make a sequence from the iterator by using Python's built in list function.
>>> from numpy import asarray
>>> from matplotlib import pylab
>>> a = asarray(outline)
>>> fig = pylab.figure(1, figsize=(5,5), dpi=72)
>>> pylab.show()
>>> pylab.plot(a[:,0], a[:,1])
[<matplotlib.lines.Line2D instance at 0x8ae7d8c>]
>>> b = asarray(simple_outline)
>>> pylab.plot(b[:,0], b[:,1])
[<matplotlib.lines.Line2D instance at 0x90bc86c>]
The original:
And simplified: